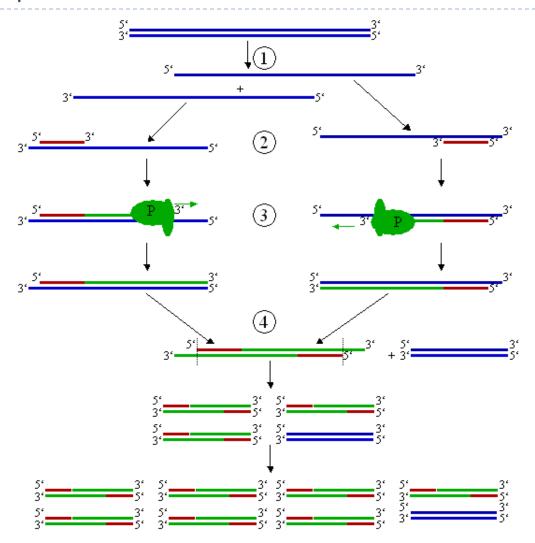
Введение в ПЦР и методы, основанные на ПЦР

Прикладная генетика для зоологов, лекция 3 Мюге H.C.

- Введение в ПЦР и методы основанные на ПЦР: микросателиты (STR),
- AFLP,
- RAPD,
- PCR-RFLP,
- Inter-SINE PCR и т.п.
- Правила написания праймеров. Интерпретация данных «фрагментного анализа». Использование ДНКмаркеров в популяционной генетике, сравнение возможностей микросателлитного и изофермнентного анализа.

История ПЦР

- Первоначально искусственный синтез ДНК с использованием олигонуклеотидов был предложен в 1971 (!) г. но не нашел применения (Кleppe et al., 1971)
- Предложен в 1983 г Кэрри Маллисом (Kary Mullis, (публикация 1985г).
- Нобелевская премия по химии 1993 г.
- ▶ Патент Cetus Corporation, затем продан за 300000 Hoffmann-La Roche. Значительно тормозил развитие методов, основанных на ПЦР, неоднократно оспаривался в судах (Du Pont, Promega)
- Патент истек в 2005 г.!



Полимеразная цепная реакция (ПЦР)

- Выделенная ДНК
- Буфер
- Mg
- dNTPs (dA, dC, dT, dG)
- Таq-полимераза
- Праймеры («туда и обратно»)
- Амплификатор
- Набор на 100 реакций от 900 до 2000 руб

Схема ПЦР

Ролик про ПЦР с диска

Эволюция ПЦР. Возможно, «самый первый»

Эволюция ПЦР. Амплификатор Терцик

Эволюция ПЦР. Амплификатор "Tetrad Thermal Cycler" (MJ Research PTC-225, USA)

Термостойкая ДНК-полимераза

- ▶ Taq-полимераза Thermus aquaticus
- ▶ Pfu-полимераза Pyrococcus furiosus
- ▶ Pwo-полимераза- Pyrococcus woesei
- ▶ И др.
- А также смеси в различных сочетаниях

Полимеразная цепная реакция (ПЦР) наборы реактивов для ПЦР

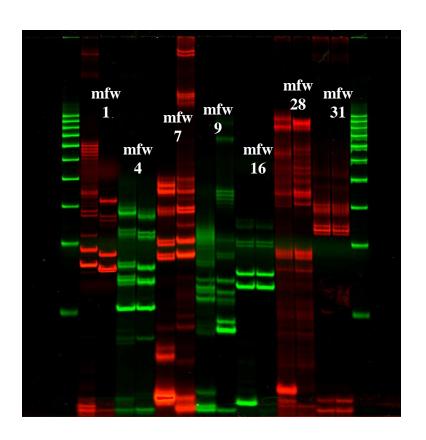
- «Сухие ядра Гаджи Омаровича» (ИОГЕН, БИОКОМ) -«...просто добавь воды»
 - готовый сухой премикс в разовых пробирках
 - дилюэнт (разбавитель)
 - праймеры
 - ДНК Вашего организма

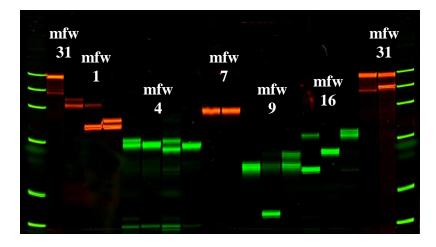
Плюсы: работает как зверь, не безумно дорого (15р реакция), не требует (?) морозильника.

Минусы: нет возможности оптимизации по Mg, объему и т.п.

Полимеразная цепная реакция (ПЦР) наборы реактивов для ПЦР

- Наборы для ПЦР
- Силекс (<u>www.sileks.com</u>), Хеликон (<u>www.helicon.ru</u>) и много других
- Есть возможность оптимизации,
- ▶ HotStart и другие модификации фермента




Оптимизация ПЦР

- Подбор температуры отжига
- ▶ Титрование по магнию (1.0 3.5 mM)
- Если не помогло:
- ▶ Touch-Down PCR с широким диапазоном t
- Удлинение отжига и синтеза (до 2 минут)
- Работа с матрицей и с методом экстракции ДНК (переосаждение (доп. очистка), концентрация, разбавление, вырезание из агарозы крупных фрагментов и т.д.)
- Использование других праймеров
- Nested PCR

Оптимизация ПЦР – титрование по **M**g. и температуре отжига

Strictly following the protocol in original

Adjusted:

- Touchdown
- •Annealing to
- •Mg²⁺
- •etc.

▶ publication Grooijmans et. al. 1997

ПЦР: правила «хорошего тона»

- Всегда ставить отрицательный контроль (вода вместо ДНК)
- Ставить положительный контроль (с заведомо работающей ДНК)
- ПЦР-гигиена не допускать попадания ПЦР-продукта в зону,
 где Вы собираете реакцию
- Иметь «свой» набор реактивов и праймеров, пипетки должны быть четко маркированы (до и после ПЦР разные комплекты)
- ПЦР продукты хранятся в отдельном холодильнике, и берутся другим комплектом рук.

Вещества, улучшающие специфичность (и/или) выход PCR реакции

Вещество	Сток	Используемые концентрации	Механизм действия
BSA	10 μg/ μl	~0.1 µg/ml	стабилизация фермент
DMSO	100%	2.0-15% (оптимально ~5%)	повышение растворимости
Glycerol	100%	5-20% (оптимально10- 15%)	стабилизация фермента
Formamid	100%	1-5%	
Pyrophosphatase thermostable	5 u/µl	0.001-1u/peaкцию	устранение пирофосфатов, которые могут обращать реакцию полимеризации

Влияние на ПЦР реакцию:

Вещество	действие		
Агароза	не мешает до ~1%.		
AcONa (pH 5.0)	начинает ингибировать при <u>></u> 5m M .		
EDTA	связывается с Mg ²⁺ стехиометрически, начинает ингибировать при <u>></u> 0.5mM, PCR не идёт при 1mM.		
DEPC	ингибирует реакцию, лучше не использовать в PCR-реакции растворы, обработанные DEPC.		
Желатин	I 0µg/ml - не мешает.		
Изопропанол	ингибирование при концентрациях \geq 1% (более сильный ингибитор, чем этанол).		
Масло, покрывающее PCR	может устранять ингибирующий эффект некоторых загрязнений.		
NaCl	заметно ингибирует при 25mM, PCR не идёт при 50mM.		
Сахароза	не мешает до 30%.		
Фенол	уменьшает выход при >0.2%, PCR не идёт при 0.5%		
Этанол	для некоторых реакций - стимулирующий эффект при 1%, для других - ингибирование при концентрациях <u>></u> 1%.		

Влияние красителей на PCR.

- Красители:
- Cresol red 0.2mM
- ❖ Бромфеноловый синий <20µg/ml</p>
- ◆ EtBr~ 0.Iµg/ml

Вывод – краситель и утяжелитель (глицерин, сахароза) можно добавлять непосредственно в ПЦР реакцию (обле

Праймеры для ПЦР

Длина 18-30 пар оснований

- GC-состав ~ 40—60 %;
- ▶ близкие T_m праймеров (отличия не более, чем на 5 °C);
- Температура отжига более 55С и менее 60С (если возможно)
- $T_m = 2 \cdot (n_A + n_T) + 4 \cdot (n_G + n_C)$
- отсутствие неспецифических вторичных структур шпилек и димеров;
- желательно, чтобы на 3'-конце был гуанин или цитозин, поскольку они образуют три водородные связи с молекулой матрицы, делая гибридизацию более стабильной.

Если используем ранее опубликованные праймеры:

- Внимательно читать раздел методы!
- Не верить условиям ПЦР в разделе «методы» (требуется оптимизация под Ваши реактивы и оборудование)

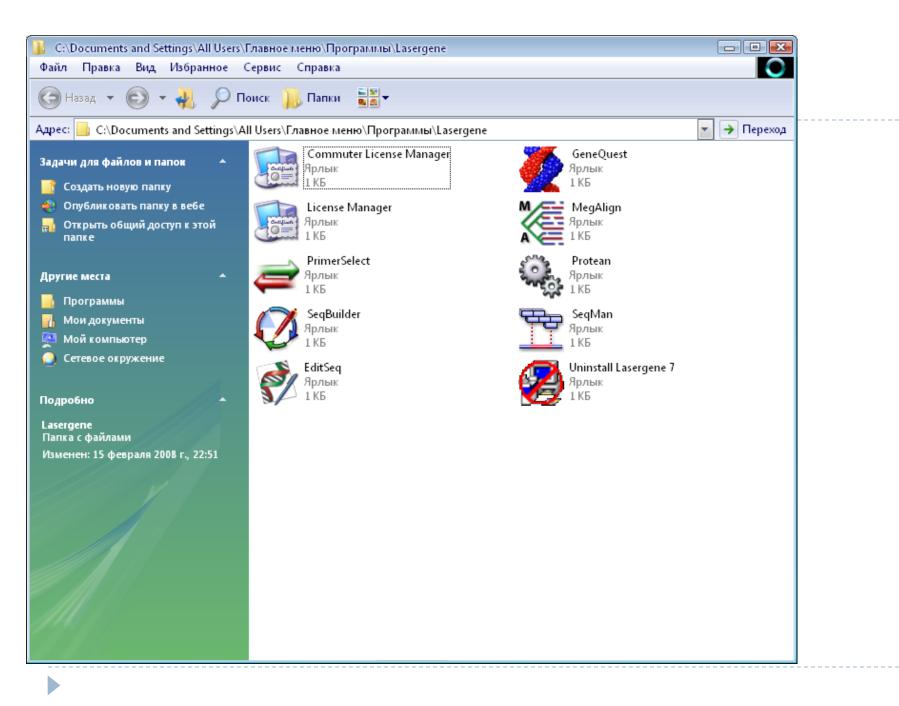
Праймеры для ПЦР

«Универсальные»

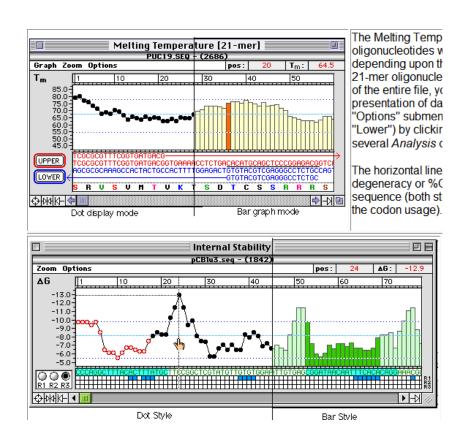
- Баркодинг: COI (Folmer et al., 1994)
- ▶ HCO2198 TAA ACT TCA GGG TGA CCA AAA AAT CA
- ▶ LCO1490 GGTCAACAAATCATAAAGATATTGG
- ▶ Simon 1991, 1994 universal primers for arthropods

Molecular Ecology (2005) 14, 891-899

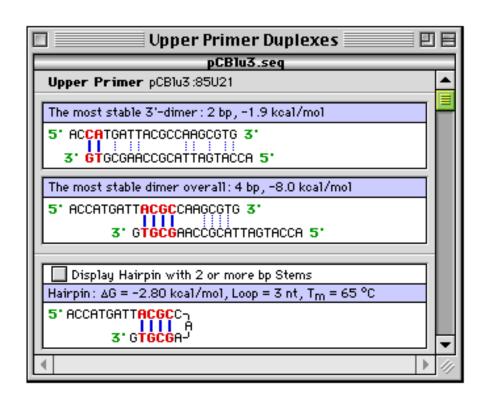
doi: 10.1111/j.1365-294X.2005.02448.>


Universal primers and PCR of gut contents to study marine invertebrate diets

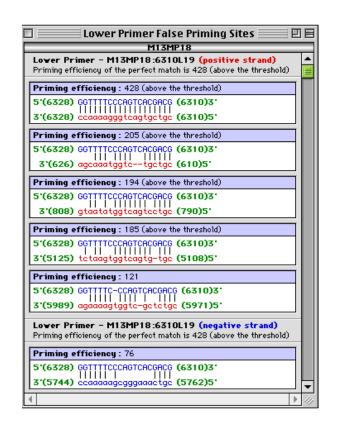
L. E. BLANKENSHIP and A. A. YAYANOS


Праймеры для ПЦР

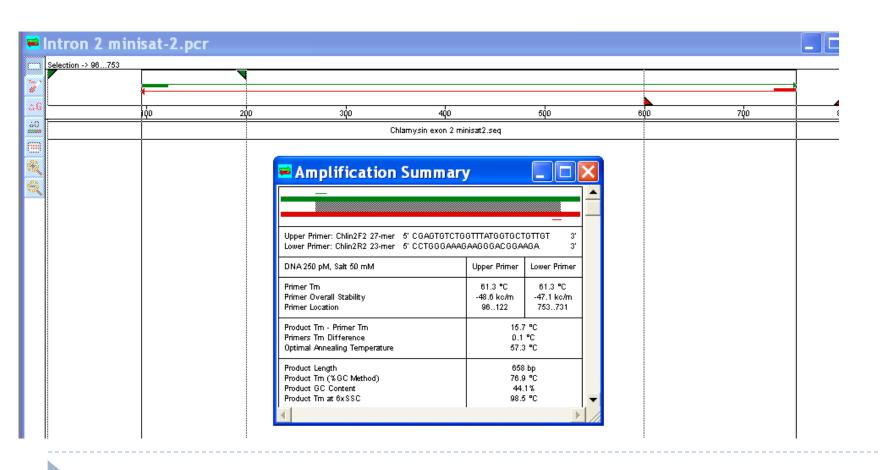
- Создание своих праймеров
- Программы: PrimerSelect (DNASTAR), Oligo
- Необходимо знать последовательность (генбанк)
- Размер фрагмента
- Проверка на димеры и шпильки
- Проверка на ложные сайты отжига



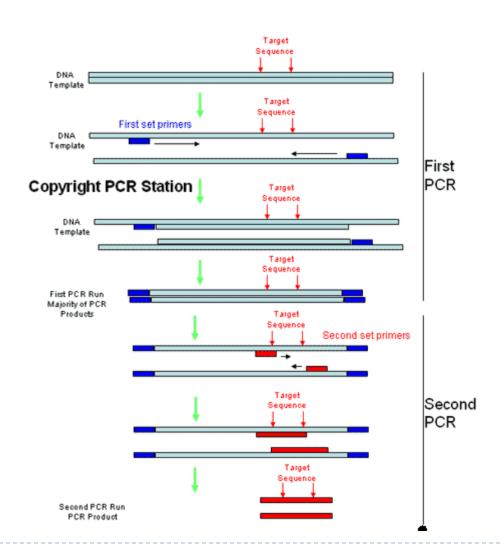
Разработка праймеров – температура отжига



Разработка праймеров – шпильки и димеры



Разработка праймеров – ложные сайты отжига



Создание праймеров на фланкирующие области в программе PrimerSelect (DNAStar).

Nested PCR (гнездовой ПЦР)

Touch-Down PCR

- Уменьшение температуры отжига на каждом цикле
- Удлинение времени отжига на каждом цикле
- Иногда уменьшение также и температуры синтеза на каждом цикле

Hot-Start PCR

- Добавление полимеразы после предварительного прогрева
- Или: активация инактивированной белками полимеразы предварительным длительным прогревом (10-15 минут)
- Или: использование плавких разделителей между полимеразой и матрицей
- Позволяет избежать удлинения неспецифически севших праймеров, повышает специфичность реакции

Анализ ПЦР реакции

- Агарозный электрофорез
- Акриламидный электрофорез
- Капиллярный электрофорез

Нужно:

- **Г**ель
- Камера
- Блок питания
- Трансиллюминатор

